Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Assessment of thermo-mechanical fatigue of exhaust manifold
Košťál, Josef ; Petruška, Jindřich (oponent) ; Šebek, František (vedoucí práce)
This master’s thesis deals with thermo–mechanical analysis and fatigue life prediction of the exhaust manifold. At first, a research study was carried out, in which the phenomenon of thermo–mechanical fatigue is reviewed. The main damage mechanisms and the modelling methods were presented. The specific behaviors of the materials subjected to thermo–mechanical loads were also covered. An overview of suitable material and fatigue life models was listed together with the algorithm of the fatigue life component prediction. Secondly, the theoretical background has been applied to the case study of the exhaust manifold subjected to thermo–mechanical loads. Two temperature-dependent elasto–plastic material models were calibrated and validated on the basis of experimental data, and the discretized finite element model of the exhaust manifold assembly was created. The model of the thermal boundary conditions was prescribed on the basis of steady state conjugate heat transfer analyses. One-way coupled thermal–mechanical finite element simulations were performed for each material model. A paradigm of uncoupled fatigue life model – suitable for low cycle fatigue – was used, hence the fatigue life prediction was evaluated in post-processing. Two fatigue life models were used – energy-based and strain-based. The obtained values of predicted fatigue life have been compared according to the material and fatigue life models which have been used. Lastly, the conclusions, the possibilities of further research and possible improvements are proposed and discussed.
Assessment of thermo-mechanical fatigue of exhaust manifold
Košťál, Josef ; Petruška, Jindřich (oponent) ; Šebek, František (vedoucí práce)
This master’s thesis deals with thermo–mechanical analysis and fatigue life prediction of the exhaust manifold. At first, a research study was carried out, in which the phenomenon of thermo–mechanical fatigue is reviewed. The main damage mechanisms and the modelling methods were presented. The specific behaviors of the materials subjected to thermo–mechanical loads were also covered. An overview of suitable material and fatigue life models was listed together with the algorithm of the fatigue life component prediction. Secondly, the theoretical background has been applied to the case study of the exhaust manifold subjected to thermo–mechanical loads. Two temperature-dependent elasto–plastic material models were calibrated and validated on the basis of experimental data, and the discretized finite element model of the exhaust manifold assembly was created. The model of the thermal boundary conditions was prescribed on the basis of steady state conjugate heat transfer analyses. One-way coupled thermal–mechanical finite element simulations were performed for each material model. A paradigm of uncoupled fatigue life model – suitable for low cycle fatigue – was used, hence the fatigue life prediction was evaluated in post-processing. Two fatigue life models were used – energy-based and strain-based. The obtained values of predicted fatigue life have been compared according to the material and fatigue life models which have been used. Lastly, the conclusions, the possibilities of further research and possible improvements are proposed and discussed.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.